The LZIP: A Bayesian latent factor model for correlated zero-inflated counts.

نویسندگان

  • Brian Neelon
  • Dongjun Chung
چکیده

Motivated by a study of molecular differences among breast cancer patients, we develop a Bayesian latent factor zero-inflated Poisson (LZIP) model for the analysis of correlated zero-inflated counts. The responses are modeled as independent zero-inflated Poisson distributions conditional on a set of subject-specific latent factors. For each outcome, we express the LZIP model as a function of two discrete random variables: the first captures the propensity to be in an underlying "at-risk" state, while the second represents the count response conditional on being at risk. The latent factors and loadings are assigned conditionally conjugate gamma priors that accommodate overdispersion and dependence among the outcomes. For posterior computation, we propose an efficient data-augmentation algorithm that relies primarily on easily sampled Gibbs steps. We conduct simulation studies to investigate both the inferential properties of the model and the computational capabilities of the proposed sampling algorithm. We apply the method to an analysis of breast cancer genomics data from The Cancer Genome Atlas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Zero- Inflated Poisson model for prognosis of demographic factors associated with using crystal meth in Tehran population

    Background: Use of methamphetamine (MA) and other stimulants has increased steadily over the past 10 years. Risk factor evaluation to reduce the problem in the community is one solution to protect people from addiction. This study aimed at using Bayesian zero- inflated Poisson (ZIP) model to investigate the relationship between the number of using crystal meth and some demogr...

متن کامل

Multivariate zero-inflated modeling with latent predictors: Modeling feedback behavior

In educational studies, the use of computer-based assessments leads to the collection of multiple outcomes to assess student performance. The student-specific outcomes are correlated and often measured in different scales, such as continuous and count outcomes. A multivariate zero-inflated model with random effects is proposed and adapted for the challenging situation where the multiple outcome...

متن کامل

zoib: An R Package for Bayesian Inference for Beta Regression and Zero/One Inflated Beta Regression

Abstract The beta distribution is a versatile function that accommodates a broad range of probability distribution shapes. Beta regression based on the beta distribution can be used to model a response variable y that takes values in open unit interval (0, 1). Zero/one inflated beta (ZOIB) regression models can be applied when y takes values from closed unit interval [0, 1]. The ZOIB model is b...

متن کامل

Examining signalized intersection crash frequency using multivariate zero-inflated Poisson regression

In crash frequency studies, correlated multivariate data are often obtained for each roadway entity longitudinally. The multivariate models would be a potential useful method for analysis, since they can account for the correlation among the specific crash types. However, one issue that arises with this correlated multivariate data is the number of zero counts increases as crash counts have man...

متن کامل

Modeling the Number of Attacks in Multiple Sclerosis Patients Using Zero-Inflated Negative Binomial Model

Background and aims: Multiple sclerosis (MS) is an inflammatory disease of the central nervous system.The impact of the number of attacks on the disease is undeniable. The aim of this study was to analyze thenumber of attacks in these patients.Methods: In this descriptive-analytical study, the registered data of 1840 MS patients referred to the MS clinicof Ayatollah Kash...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 73 1  شماره 

صفحات  -

تاریخ انتشار 2017